一種常用熱敏電阻在25℃時的阻值為5kΩ,每1℃的溫度改變造成200Ω的電阻變化。注意10Ω的引線電阻只造成可忽略的 0.05℃誤差。它非常適合需要進行快速和靈敏溫度測量的電流控制應用。尺寸小對于有空間要求的應用是有利的,但必須注意防止自熱誤差。熱敏電阻還有其自身的測量技巧。熱敏電阻體積小是優(yōu)點,它能很快穩(wěn)定,不會造成熱負載。不過也因此很不結實,大電流會造成自熱。由于熱敏電阻是一種電阻性器件,任何電流源都會在其上因功率而造成發(fā)熱。功率等于電流平方與電阻的積。因此要使用小的電流源。如果熱敏電阻暴露在高熱中,將導致長久性的損壞。近年來,MEMS技術的發(fā)展使得微型化、低功耗的溫度傳感器成為可能。成都溫度傳感器類型
熱電偶傳感器工作原理:當有兩種不同的導體和半導體A和B組成一個回路,其兩端相互連接時,只要兩結點處的溫度不同,一端溫度為T,稱為工作端或熱端,另一端溫度為TO,稱為自由端或冷端,則回路中就有電流產生,即回路中存在的電動勢稱為熱電動勢。這種由于溫度不同而產生電動勢的現(xiàn)象稱為塞貝克效應。與塞貝克有關的效應有兩個:其一,當有電流流過兩個不同導體的連接處時,此處便吸收或放出熱量(取決于電流的方向),稱為珀爾帖效應;其二,當有電流流過存在溫度梯度的導體時,導體吸收或放出熱量(取決于電流相對于溫度梯度的方向),稱為湯姆遜效應。兩種不同導體或半導體的組合稱為熱電偶。東莞低溫溫度傳感器價位在制冷系統(tǒng)中,溫度傳感器幫助控制冷卻過程,確保設備高效運行。
在工業(yè)生產中,由于熱敏電阻接入電橋的銅導線電阻會隨環(huán)境溫度變化,若只將連接導線接在一個橋臂上,環(huán)境溫度變化時,導線電阻的變化將與熱敏電阻的電阻變化疊加,產生附加誤差。因此,普遍采用三線制接線方法,將導線2與3分別接至電橋的兩個橋臂上,以相互抵消電阻變化的影響,從而減少儀表顯示值的誤差。但需注意,這種誤差減小是有限的,對于不平衡電橋,只在儀表刻度起點能實現(xiàn)全補償,滿刻度時附加誤差較大。此外,還需考慮電源引線帶來的附加溫度誤差。當電流流過熱電阻連接電源的導線1時,會產生電壓降,環(huán)境溫度變化時,電橋上下支路電壓也會隨之變化,進而影響儀表顯示。
在模擬脈沖傳感器的一個簡單實例中,當特定溫度超出限時,會觸發(fā)邏輯輸出脈沖。這些裝置的部分會在溫度達到或低于規(guī)定限值時被觸活。這種傳感器設計允許在固定閾值的情況下,通過調整阻值來改變溫度閾值。當需要實際的溫度讀數時,微處理器和單一信號傳感器會被采用。微處理器內部的計數器用于計量時間,從而輕松地將來自溫度傳感器的信號轉換為測量溫度。此外,還有非接觸式溫度傳感器,其敏感元件與被測對象不直接接觸。這類傳感器可用于測量運動物體、小目標以及熱容量小或溫度變化迅速的對象的表面溫度。其優(yōu)點是不受感溫元件耐熱程度的限制,因此較高可測溫度原則上沒有限制。在高溫超過1800攝氏度的環(huán)境下,非接觸式測溫方法尤為適用。在食品加工行業(yè),溫度傳感器確保食品儲存和加工過程中的安全性。
額定室溫電阻取決于基本材料的電阻率,大小和幾何形狀,以及電極的接觸面積。厚而窄的熱敏電阻具有相對高的電阻,而形狀是薄而寬的則具有較低電阻。實際尺寸也十分靈活,它們可小至.010英寸或很小的直徑。較大尺寸幾乎沒有限制,但通常適用半英寸以下。非接觸測溫優(yōu)點:測量上限不受感溫元件耐溫程度的限制,因而對較高可測溫度原則上沒有限制。對于1800℃以上的高溫,主要采用非接觸測溫方法。隨著紅外技術的發(fā)展,輻射測溫 逐漸由可見光向紅外線擴展,700℃以下直至常溫都已采用,且分辨率很高。集成溫度傳感器體積小、功耗低,普遍應用于各類電子設備的溫度監(jiān)測。廣西高精度溫度傳感器廠家
氣象站的溫度傳感器,收集大氣溫度數據,為天氣預報提供依據。成都溫度傳感器類型
接觸式溫度測量:接觸式測溫的方法就是使溫度敏感元件與被測溫度對象相接觸,使其進行充分的熱交換,當熱交換平衡時,溫度敏感元件與被測溫度對象的溫度相等,測溫傳感器的輸出大小即反映了被測溫度的高低。常見的接觸式測溫的溫度傳感器主要有將溫度轉化為非電量和將溫度轉化為電量兩大類。而轉化為非電量的溫度傳感器主要是熱膨脹式溫度傳感器;轉化為電量的溫度傳感器主要是熱電偶、熱電阻、熱敏電阻和集成溫度傳感器等。由于熱電偶、熱電阻和熱敏電阻都屬于熱電式傳感器,是把溫度轉換成電勢和電阻的方法并且目前已在工業(yè)生產中得到了普遍的應用。成都溫度傳感器類型