隨著6G、AI大模型與邊緣計(jì)算的深度融合,倍聯(lián)德正布局兩大前沿方向:邊緣大模型:將參數(shù)量達(dá)6710億的醫(yī)療大模型壓縮至邊緣設(shè)備可運(yùn)行范圍,支持基層醫(yī)院在本地完成從術(shù)前規(guī)劃到術(shù)中決策的全流程AI輔助;數(shù)字孿生工廠:通過邊緣計(jì)算實(shí)時(shí)映射生產(chǎn)線數(shù)據(jù),結(jié)合數(shù)字孿生技術(shù)實(shí)現(xiàn)產(chǎn)能預(yù)測、能耗優(yōu)化等智能決策,使工廠運(yùn)營成本降低25%?!斑吘売?jì)算不是對(duì)云計(jì)算的替代,而是智能世界的‘神經(jīng)末梢’。”倍聯(lián)德CEO王偉表示。目前,該公司已擁有80余項(xiàng)知識(shí)產(chǎn)權(quán),其邊緣計(jì)算產(chǎn)品已成功應(yīng)用于礦山、通過減少數(shù)據(jù)中心能耗,邊緣計(jì)算有助于降低全球IT行業(yè)的碳排放總量。廣東道路監(jiān)測邊緣計(jì)算盒子價(jià)格
邊緣計(jì)算的部署成本遠(yuǎn)不止硬件采購那么簡單。根據(jù)行業(yè)調(diào)研,企業(yè)需承擔(dān)四大重要成本:硬件成本:邊緣節(jié)點(diǎn)需部署專業(yè)用服務(wù)器、智能網(wǎng)關(guān)等設(shè)備,單個(gè)節(jié)點(diǎn)成本數(shù)萬元至數(shù)十萬元不等。例如,某汽車工廠部署200個(gè)邊緣節(jié)點(diǎn),硬件總投入超千萬元。網(wǎng)絡(luò)成本:5G專網(wǎng)或工業(yè)以太網(wǎng)建設(shè)成本高昂,且需持續(xù)支付帶寬租賃費(fèi)用。某物流園區(qū)測試顯示,5G網(wǎng)絡(luò)年費(fèi)用占邊緣計(jì)算總成本的30%。運(yùn)維成本:邊緣節(jié)點(diǎn)分散部署,需專業(yè)團(tuán)隊(duì)進(jìn)行設(shè)備巡檢、故障修復(fù)和軟件更新,人力成本較集中式數(shù)據(jù)中心高40%。能源成本:邊緣設(shè)備24小時(shí)運(yùn)行,電力消耗和冷卻系統(tǒng)費(fèi)用占運(yùn)營成本的25%以上。廣東園區(qū)邊緣計(jì)算解決方案通過邊緣計(jì)算,物聯(lián)網(wǎng)設(shè)備可以更加智能地工作。
公司自主研發(fā)的EdgeGuard安全平臺(tái),基于零信任原則對(duì)所有訪問請(qǐng)求進(jìn)行動(dòng)態(tài)認(rèn)證。通過SD-WAN技術(shù)實(shí)現(xiàn)邊緣節(jié)點(diǎn)與云端的加密隧道連接,采用國密SSL/TLS 1.3協(xié)議,將數(shù)據(jù)傳輸延遲控制在5ms以內(nèi)。針對(duì)DDoS攻擊,平臺(tái)集成阿里云高防IP,可自動(dòng)識(shí)別并清洗惡意流量。在2024年某省級(jí)電網(wǎng)的攻防演練中,該系統(tǒng)成功防御了峰值流量達(dá)500Gbps的攻擊,保障了電力調(diào)度的實(shí)時(shí)性。倍聯(lián)德將聯(lián)邦學(xué)習(xí)技術(shù)應(yīng)用于邊緣安全,其EdgeAI模塊可在本地訓(xùn)練異常檢測模型,無需上傳原始數(shù)據(jù)。通過分析設(shè)備日志、網(wǎng)絡(luò)流量、系統(tǒng)調(diào)用等多維度數(shù)據(jù),模型可識(shí)別APT攻擊、數(shù)據(jù)泄露等高級(jí)威脅。在某汽車工廠的實(shí)踐中,該系統(tǒng)提前15天預(yù)警了針對(duì)焊接機(jī)器人的勒索軟件攻擊,避免生產(chǎn)線癱瘓。此外,公司開發(fā)的區(qū)塊鏈存證平臺(tái),可對(duì)邊緣節(jié)點(diǎn)操作進(jìn)行不可篡改的審計(jì),滿足等保2.0三級(jí)要求。
數(shù)據(jù)隱私泄露風(fēng)險(xiǎn)與合規(guī)要求,正成為企業(yè)數(shù)字化轉(zhuǎn)型的重要挑戰(zhàn)。倍聯(lián)德創(chuàng)新采用“聯(lián)邦學(xué)習(xí)+邊緣加密”技術(shù),在醫(yī)療、金融等強(qiáng)監(jiān)管領(lǐng)域構(gòu)建起數(shù)據(jù)安全防線。在醫(yī)療行業(yè),其HID系列醫(yī)療平板通過UL60601-1醫(yī)療認(rèn)證,可在本地完成心電圖、超聲影像的AI分析,無需上傳原始數(shù)據(jù)至云端。在廣州某三甲醫(yī)院的實(shí)踐中,該設(shè)備使肺病早期篩查準(zhǔn)確率提升至96%,同時(shí)滿足《個(gè)人信息保護(hù)法》對(duì)醫(yī)療數(shù)據(jù)隱私的要求。更值得關(guān)注的是,倍聯(lián)德開發(fā)的DeepSurgeon AI平臺(tái)支持多醫(yī)院聯(lián)合訓(xùn)練模型時(shí)的參數(shù)隔離,使跨機(jī)構(gòu)協(xié)作中的數(shù)據(jù)泄露風(fēng)險(xiǎn)趨近于零。在金融領(lǐng)域,其邊緣計(jì)算節(jié)點(diǎn)采用國密SM4算法對(duì)交易數(shù)據(jù)進(jìn)行實(shí)時(shí)加密,并支持動(dòng)態(tài)密鑰更新。在2024年國家金融科技認(rèn)證中心的攻防演練中,該系統(tǒng)成功抵御10萬次/秒的DDoS攻擊,數(shù)據(jù)泄露風(fēng)險(xiǎn)較傳統(tǒng)云架構(gòu)降低99.6%。邊緣緩存技術(shù)通過預(yù)測用戶行為提前存儲(chǔ)熱門內(nèi)容,減少重復(fù)數(shù)據(jù)傳輸。
倍聯(lián)德技術(shù)已深度融入自動(dòng)駕駛?cè)湕l:車路協(xié)同:在無錫國家的車聯(lián)網(wǎng)先導(dǎo)區(qū),倍聯(lián)德部署的路側(cè)邊緣計(jì)算節(jié)點(diǎn)可實(shí)時(shí)處理1平方公里范圍內(nèi)所有車輛的數(shù)據(jù),將信號(hào)燈配時(shí)優(yōu)化效率提升40%,路口通行能力提高25%。礦區(qū)自動(dòng)駕駛:為內(nèi)蒙古某煤礦設(shè)計(jì)的防爆型邊緣計(jì)算設(shè)備,可在-40℃至60℃極端環(huán)境下穩(wěn)定運(yùn)行,支持5G+TSN確定性網(wǎng)絡(luò),使無人礦卡調(diào)度延遲從秒級(jí)降至毫秒級(jí),年運(yùn)輸效率提升30%。Robotaxi運(yùn)營:與某頭部出行平臺(tái)合作的項(xiàng)目中,倍聯(lián)德邊緣計(jì)算平臺(tái)實(shí)現(xiàn)遠(yuǎn)程監(jiān)控與本地決策的協(xié)同,使單車日均接單量從12單提升至18單,乘客等待時(shí)間縮短35%。邊緣計(jì)算正在推動(dòng)工業(yè)互聯(lián)網(wǎng)的快速發(fā)展。無風(fēng)扇系統(tǒng)邊緣計(jì)算設(shè)備
邊緣計(jì)算為游戲行業(yè)提供了流暢、低延遲的游戲體驗(yàn)。廣東道路監(jiān)測邊緣計(jì)算盒子價(jià)格
在工業(yè)物聯(lián)網(wǎng)與5G技術(shù)深度融合的當(dāng)下,邊緣計(jì)算憑借其低延遲、高可靠的特性,成為智能制造、智能交通、能源管理等領(lǐng)域的重要基礎(chǔ)設(shè)施。然而,隨著邊緣節(jié)點(diǎn)數(shù)量呈指數(shù)級(jí)增長,其分散部署、資源受限、協(xié)議異構(gòu)等特點(diǎn),正引發(fā)數(shù)據(jù)泄露、設(shè)備劫持、拒絕服務(wù)攻擊等新型安全威脅。據(jù)《邊緣計(jì)算安全白皮書》統(tǒng)計(jì),2024年全球邊緣計(jì)算安全事件同比增長137%,其中工業(yè)場景占比達(dá)42%。在此背景下,構(gòu)建多層次防護(hù)體系已成為行業(yè)共識(shí),而深圳市倍聯(lián)德實(shí)業(yè)有限公司憑借其在邊緣計(jì)算領(lǐng)域的深厚積累,正為行業(yè)提供可復(fù)制的安全解決方案。廣東道路監(jiān)測邊緣計(jì)算盒子價(jià)格